Did the Rising Importance of Services Decelerate Overall Productivity Improvement of Turkey during 2002-2007?*

Murat Üngör†

Central Bank of the Republic of Turkey

September 26, 2012

Abstract

When examined in isolation, the 2002-2007 period in Turkey stands out as a high growth period. However, the relative performance of Turkey in this period is weaker compared to China. The service sector in Turkey had the lowest labor productivity growth rate. Contrary to the Turkish case, the service sector in China witnessed rapid labor productivity growth, which exceeded labor productivity growth in agriculture and industry during 2002-2007. Counterfactual experiments based on a three-sector model point out that the service sector represented a drag on aggregate productivity in Turkey. If the service sector in Turkey had had the same annual productivity growth rates as observed in China, then the average annual growth rate of the aggregate labor productivity would have been 8.5% instead of 5.7% during 2002-2007.

*JEL classification: O11, O40, O57.

Keywords: Sectoral productivity; services; China; Turkey.

*I am thankful to Cengiz Cihan, Burcu Gürçihan and Şeref Saygılı for sharing data. The views expressed herein are those of the author and not necessarily those of the Central Bank of the Republic of Turkey.

†Research and Monetary Policy Department, Central Bank of the Republic of Turkey, İstiklal Caddesi 10, Ulus, 06100 Ankara, Turkey. E-mail address: Murat.Ungor@tcmb.gov.tr
1 Introduction

Rising importance of emerging market economies in global economic affairs is one of the central topics of the current research in international macroeconomics (see, for example, Kose and Prasad, 2010). Over the past two-three decades, the global economy has been reshaped by the rise of the emerging markets, most notably China. Economic reforms, which started in 1978, have driven a rapid transition of the economy from a central planning system toward a market-oriented system integrating with the world economy. The Chinese economy, today the second largest in the world, has maintained high and steady growth rates for over two decades (see, for example, Brandt and Rawski, 2008).

Recently, Turkey has grabbed the attention of international economics as the country has shown very high growth rates in recent years. Turkey is an upper middle income country with a population of around 75 million and a gross domestic product of around US$0.8 trillion, making it the 18th largest economy in the world as of 2011. It is the Government’s stated intention that Turkey becomes one of the world’s ten largest economies by 2023, the 100th anniversary of the founding of the Turkish Republic.

![Figure 1: Historical Growth Performance of Turkey](image)

Figure 1: Historical Growth Performance of Turkey

Panel (a) in Figure 1 shows GDP per capita and labor productivity (measured as GDP per person employed) in Turkey relative to the United States during 1960-2010. Historically, per capita GDP in Turkey relative to the United States does not show a significant catching-up. For example, GDP per capita in Turkey increases from about 19% of the U.S. level in 1960 to about 23% in 1976. Turkey experiences a relative deterioration starting with 1977 on as the GDP per capita shrinks to 19.8% of the U.S. level in 2001. Then, there is an upward trend since 2002. GDP per capita in Turkey relative to the United States increases from 20.5% in 2002 to about 24.4% in 2007. Moreover, labor productivity in Turkey increases from about 31% of the U.S. level in 2002 to about 42% in 2007. This makes Turkey ranked second (after China) in average annual growth rate of labor productivity during 2002-2007 among the BRICs and the MISTs economies.

---

1 Data are from the Conference Board Total Economy Database (January 2012). The level estimates are converted at purchasing power parity to adjust for differences in relative price levels between countries.

2 The acronym BRIC stands for Brazil, Russia, India and China, the four emerging markets some believed
Panel (b) in Figure 1 depicts labor productivity (based on constant local currency) in Turkey between 1988 and 2010. During the period 1988-2001, real GDP per person employed grew at 1.5% per year. The Turkish economy used to experience boom-and-bust cycles throughout the 1990s. The economic crisis in 2001 was the low point of this period, when the economy contracted more than 5%. Since 2001, Turkey has put in place a structural reform agenda, coupled with sound monetary and fiscal policies, to establish macroeconomic and financial stability and to improve the business environment (OECD, 2006). During the period 2002-2007, real GDP per person employed grew more than 5% per year.

Observed high growth rates in aggregate labor productivity are linked to the structural transformation of the economies, broadly described as changes in the allocation of factors of production across sectors. In this transformation, a shift occurs in the composition of output and employment away from agriculture and towards industry and services (Kuznets, 1966). Panel (a) in Table 1 shows the distributions of output in both China and Turkey measured in value-added terms (all measured in current local currency) in 2002, 2005, and 2007. The share of output in agriculture (which also includes forestry and fisheries) appear quite similar for China and Turkey. The share of value-added in industry (manufacturing, mining, construction, and utilities) is higher in China than it is in Turkey and the share of value-added in services is higher in Turkey than it is in China during 2002-2007.

<table>
<thead>
<tr>
<th>Year</th>
<th>Value Added (a)</th>
<th>Employment (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Agriculture</td>
<td>Industry</td>
</tr>
<tr>
<td>2002</td>
<td>China</td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td>Turkey</td>
<td>12.5</td>
</tr>
<tr>
<td>2005</td>
<td>China</td>
<td>12.1</td>
</tr>
<tr>
<td></td>
<td>Turkey</td>
<td>11.9</td>
</tr>
<tr>
<td>2007</td>
<td>China</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>Turkey</td>
<td>9.7</td>
</tr>
</tbody>
</table>

Source: China Statistical Yearbook (2011); Üngör (2011a); WDI (2012).
of employment in industry increased from 21.4% to 26.8%, and the share of employment in services increased from 28.6% to 32.4%. The share of employment in industry in Turkey and in China are the same in 2007. The share of employment in agriculture is higher in China than it is in Turkey and the share of employment in services is higher in Turkey than it is in China during 2002-2007. In Turkey, the share of services in employment has been increasing at a rapid rate, much greater than the corresponding growth rate witnessed by the service sector in the employment of China. The service sector accounts for about about 50% of total employment in Turkey in 2007.

Figure 2 shows the time paths of labor productivity (2002=1) in Turkey and in China during 2002-2007. The annualized growth rates in labor productivity between 2002 and 2007 are 4.84%, 5.38%, and 3.65% for agriculture, industry and services, respectively in Turkey. When examined in isolation, the 2002-2007 period in Turkey stands out as a high growth period. However, the relative performance of Turkey in this period is weaker compared to China. Panel (b) in Figure 2 shows that all of the three sectors had experienced rapid labor productivity growth rates in China and the corresponding figures are 8.27%, 7.31%, and 8.94% for agriculture, industry and services, respectively.

One striking observation from Figure 2 is that the service sector in Turkey had the lowest labor productivity growth rate during 2002-2007. This is important since, whether measured in terms of employment or value added, the service sector by far dominates the structure of the Turkish economy (Table 1). Contrary to the Turkish case, the service sector in China witnessed rapid labor productivity growth, which exceeded labor productivity growth in agriculture and industry during 2002-2007.

These observations raise the following questions: Did the rising importance of the service sector decelerate overall productivity improvement of Turkey during 2002-2007? What would have happened to the overall productivity if Turkey had shown the Chinese sectoral labor productivity growth rates?

---

4I use constant prices in local currency to derive the growth rates of labor productivity in each country since the focus of the paper is on the sectoral productivity growth rates. Therefore, the levels are not directly comparable since they do not reflect the purchasing power parity adjustments. Sectoral data for Turkey are from Üngör (2011a); sectoral employment for China are from the China Statistical Yearbook (2011); sectoral output data for China are from the World Development Indicators (2012).
productivity growth rates? This paper tries to answer such questions with a quantitative analysis of a three-sector general equilibrium model in the spirit of Rogerson (2008), Duarte and Restuccia (2010), Üngör (2011b), and İmrohoroğlu et al. (2012). The model is a static closed economy model with no asset accumulation. The idea is to assess the relevance of sectoral labor productivity growth rates in driving labor reallocation across sectors and aggregate productivity.

The model generated employment shares seem to capture the movements in the Turkish data very well. Then, I use the model to assess the quantitative role of sectoral labor productivity growth rates in the behavior of aggregate labor productivity in Turkey. To do so, I perform a series of counterfactual experiments whereby I replace a given observed sectoral labor productivity growth rates in a sector with the ones observed in China. These experiments show the importance of the service sector on the possibility of higher overall output per worker during the high-growth period in Turkey. I find that if the service sector in Turkey had had the same annual productivity growth rates as observed in China, then the average annual growth rate of the aggregate labor productivity would have been 8.5% instead of 5.7% during 2002-2007. On the other hand, the experiment where the growth rates of labor productivity in agriculture and industry are set to the growth rates in these sectors in China, leaving the service sector growth rates as in the Turkish data, suggests that the average annual growth rate of the aggregate labor productivity would have been 7.0% during 2002-2007.

Finally, I provide some sectoral details considering nine sectors of the aggregate economy. I study the sectoral sources of aggregate output per worker attributing the changes in labor productivity to two processes: productivity growth within individual sectors and the reallocation of labor across sectors. I conduct a shift-share analysis and find that productivity growth within the nine sectors explains 68.0% of the aggregate labor productivity growth in Turkey during 2002-2007. Structural change explains the remaining 32%. This finding is consistent with the observations of Timmer and de Vries (2009) that growth accelerations are mostly explained by productivity increases within sectors. Among the individual sectors, manufacturing contributes most (30.6% in total) to the labor productivity growth during 2002-2007. Market services (as a whole) contribute 56.5% to the aggregate labor productivity, while the contribution of non-market services to growth in labor productivity is very small (1.4% in total). Finance, insurance, real estate and business services and non-market services suffer from low productivity growth, increasing output prices and growing shares in employment.

There are some recent studies investigating the evolution of aggregate growth and productivity in Turkey from a historical perspective (see, for example, Altuğ et al., 2008; Adamopoulos and Akyol, 2009; İsmihan and Metin-Özcan, 2009; Çiçek and Elgin, 2011; İmrohoroğlu et al., 2012 and the references therein). This paper complements this research on Turkey addressing the aggregate economic performance of Turkey in a sectoral comparison with the Chinese economy during the high growth period of Turkey between 2002 and 2007. In addition, this paper complements the research on convergence at the sectoral level, which focuses on the importance of the service sector (see, for example, Bernard and Jones, 1996; Wong, 2006; Duarte and Restuccia, 2010). In linking the process of sectoral changes with the evolution of aggregate productivity, this paper is closely related to Duarte and Restuccia (2007, 2010), Gollin et al. (2007) and the references therein. Investigating the relationship
between the growing importance of the service sector and its implications for aggregate productivity growth, this paper is related to Baumol (1967), Nordhaus (2008), and van Ark et al. (2008). Lastly, this paper complements a literature analyzing the historical structural transformation experiences observed in emerging markets (see, for example, Brandt et al. (2008); Dekle and Vandenbroucke (2012) for China and Adamopoulos and Akyol (2009); İmrohoroğlu et al. (2012) for Turkey).

This paper is structured as follows. In Section 2, a model adopted is developed and discussed. Section 3 conducts a quantitative analysis using the theoretical framework with an emphasis on the counterfactual outcomes of inheriting the Chinese sectoral productivity growth rates. Section 4 provides a brief discussion of the results. Section 5 concludes the paper.

2 Model

Households. The economy is populated by an infinitely-lived representative household of constant size over time. The population size is normalized to one, without loss of generality. I assume that the household is endowed with one unit of productive time that it supplies inelastically to the market and consumption is the only determinant of the instantaneous utility function, which is given by:

\[ U(\bar{A}, I, S) = \bar{A} + \log(\gamma^{1-\eta}I^{\eta} + (1 - \gamma)^{1-\eta}S^{\eta})^{1/\eta}. \]  

(1)

The instantaneous utility is defined over the agricultural good (A) and the composite consumption good, where I is the consumption of the industrial good, and S is the consumption of the services.\(^5\) The elasticity of substitution between industrial goods and services is given by \(1/(1 - \eta)\). The weight \(\gamma\) influences how non-agricultural consumption expenditure is allocated between industry and services.

At each date, and given prices, the household chooses consumption of each good to maximize his lifetime utility subject to the budget constraint:

\[ p_A \bar{A} + p_I I + p_S S = \omega, \]  

(2)

where \(p_j\) is the price of good-\(j\) output and \(\omega\) is the wage-rate in the economy.

Production. There are three goods produced. The production function for sector \(j\) is

\[ U(A, C) = \begin{cases} 
\bar{A}, & \text{if } A < \bar{A}, \\
\log(C) + \bar{A}, & \text{if } A \geq \bar{A}.
\end{cases} \]

This specification of preferences implies that the economy specializes in agriculture until the subsistence level \(\bar{A}\) is reached. Moreover, the economy will never produce more agricultural goods than \(\bar{A}\). Once \(\bar{A}\) is reached, the representative household will supply labor to the other sectors. The idea is that consumers care mainly about food up to a satiation point; beyond that point, their attention focuses exclusively on non-agricultural goods. Technological progress and such a specification of preferences eventually would cause structural change, with the economy shifting from a preponderance of agricultural production to marginalization of the same sector (Gollin et al., 2007).
given by:

\[ Y_j = \theta_j L_j, \]  

(3)

where \( Y_j \) is output of sector \( j \), \( L_j \) is labor allocated to production, and \( \theta_j \) is sector \( j \)'s labor productivity. Firm \( j \) problem is given by:

\[
\max p_j Y_j - \omega L_j \quad \text{s.t.} \quad Y_j = \theta_j L_j, \quad L_j > 0.
\]  

(4)

**Equilibrium.** Given a set of prices \( \{p_A, p_I, p_S, \omega\} \), a competitive equilibrium consists of consumption decisions that are the household’s allocations \( \{A, I, S\} \), and factor allocations for the firms \( \{L_A, L_I, L_S\} \) such that given prices, the firm’s allocations solve its profit maximization problem, the household’s allocations solve the household’s utility maximization problem, and factor and product markets clear:

1. The demand of labor from firms must equal exogenous supply at every date:

\[ L_A + L_I + L_S = 1. \]  

(5)

2. Since there is no international trade or capital accumulation the following conditions hold at each date implying that the market must clear for each goods and services produced:

\[ \bar{A} = Y_A, \quad I = Y_I, \quad S = Y_S. \]  

(6)

One can combine the first-order conditions for the household maximization problem with the market-clearing conditions to obtain the following equations that explicitly characterize the equilibrium employment shares in each sector:

\[ L_A = \bar{A}/\theta_A, \quad L_I = \frac{\Delta(1 - (\bar{A}/\theta_A))}{1 + \Delta}, \quad L_S = 1 - L_A - L_I, \]  

(7)

where \( \Delta \equiv (\gamma/(1 - \gamma))(\theta_I/\theta_S)^{-\eta/(\eta-1)}. \)

Employment share in agriculture is determined solely by the subsistence constraint and labor productivity in agriculture. Employment share in agriculture is negatively correlated with productivity in this sector (and it is independent of productivity in other sectors). Hence, increases in the level of agricultural productivity push labor out of the agricultural sector, since the same amount of agricultural goods can be produced with lower levels of employment.

Allocation of labor to a non-agricultural sector depends not only in that sector’s labor productivity but also on productivity in other sectors. Productivity in agriculture affects all non-agricultural sectors as it determines the amount of labor left to be allocated among the non-agricultural sectors. A productivity increase in a non-agricultural sector \( j \), ceteris paribus, leads to flows of labor out of this sector, i.e., \( \partial L_j/\partial \theta_j < 0 \) as long as industry and services are complementary. This result is consistent with Baumol (1967) in which if one sector (say, industry) realizes higher productivity growth than its complement (say, services), the less productive sector eventually dominates the economy in terms of employment.

Note that labor is perfectly free to move between the sectors. Then, the nominal wages in sectors are equalized. From the profit-maximizing and zero-profit conditions, the producer
price of good $i$ relative to good $j$ is given by the ratio of labor productivity in these sectors:

$$\frac{p_i}{p_j} = \frac{\theta_i}{\theta_j}, \quad i \neq j. \quad (8)$$

### 3 Quantitative Analysis

#### 3.1 Data and Calibration

I use data for Turkey between 2002 and 2007. Sectoral employment and output (measured in constant local currency) are from Üngör (2011a).\(^6\) I calculate productivity levels (output per worker), $\theta_j$, from the data between 2002 and 2007. The model has three parameters to assign values to: $\bar{A}$, $\gamma$, and $\eta$. The elasticity of substitution, $1/(1-\eta)$, is a free parameter and I set $1/(1-\eta) = 0.45$.\(^7\) I calibrate the subsistence term in agriculture, $\bar{A}$, to match the share of employment in agriculture in 2002. This suggests that $\bar{A} = 0.4583$. Next, I calibrate $\gamma$ to match the share of employment in industry in 2002. This suggests that $\gamma = 0.3705$. Below I study the performance of the model economy fitting data for sectoral employment shares (and relative prices).

#### 3.2 Benchmark Results

Figure 3 shows the predicted sectoral employment shares in each sector and compares with the actual data in Turkey during 2002-2007. The data are plotted as a solid line and the model results are plotted as a dashed line.

Panel (a) in Figure 3 shows that the model reproduces the shift of employment from the agricultural to the non-agricultural sector. During the 2002-2007 period, the model predicts a decline in the agricultural employment share of 6.6 percentage points, which is 82.6% of the actual decline in the data.\(^8\) This result suggests that the simple characterization of preferences for agricultural goods in the model represents a good abstraction of the forces for employment in agriculture relative to the data.\(^9\) Productivity growth in agriculture,

---

\(^6\)Üngör (2011a) collects the data as follows: Sectoral GDP data (at basic prices in 1998) are from the Turkish Statistical Institute and sectoral employment data are from the Household Labor Force Survey of the Turkish Statistical Institute. The Turkish Statistical Institute has revised the Labor Force Survey results for 2004 and later by the new population projections. Revisions for the earlier period are not completed yet. Thus pre-2004 employment data is adjusted to account for the changes in population projections.

\(^7\)The recent literature provides a range of estimates for this parameter. Rogerson (2008), Bah (2009), and Duarte and Restuccia (2010) study multi-sector models with an elasticity of substitution of 0.44, 0.45, and 0.40, respectively. Ngai and Pissarides (2004, 2008) argue that the elasticity of substitution lies between 0.1 and 0.3. I do sensitivity analysis for this parameter studying three values of $1/(1-\eta)$: 0.1, 0.3, and 0.45. The results are very similar in each case (see Figure A.1).

\(^8\)The model predicts that agricultural employment share decreases by 4.72% (from 31.3% in 2002 to 24.7% in 2007, a $100*\ln(31.3/24.7)/5=4.72\%$ annual decrease) while in the data the decrease is 5.72% (from 31.3% to 23.5%, a $100*\ln(31.3/23.5)/5=5.72\%$ annual decrease). Thus, the model accounts for $100*4.72/5.72=82.6\%$ of the decline in agricultural employment share during 2002-2007.

\(^9\)See Şengil and Üngör (2011), Gürsel and İmamoğlu (2012), and İmrohoroğlu et al. (2012) for detailed studies focusing on the secular changes in the agricultural employment share in Turkey throughout the time.
combined with the subsistence level of consumption in agriculture explain most of the declines in the agricultural employment share for Turkey.

![Figure 3: Sectoral Employment Shares in Turkey, Model versus Data](image)

Panel (b) in Figure 3 shows that the model predicts an increase in the industrial employment share of 2.1 percentage points, which is 90.1% of the actual increase in the data between 2002 and 2006. The model slightly under predicts the industrial employment share in 2007: the model prediction is 26.0%, while the actual employment share of industry is 26.8% in 2007. Panel (c) in Figure 3 shows that the model predicts an increase in the service sector employment share of 5.0 percentage points, which is 92.2% of the actual increase in the data during 2002-2007.

In the model, sectoral output is given by labor productivity times labor input. Because the model matches the time path of sectoral labor allocation very closely, the output implications of the model over time are also quite close to the data. Therefore, I focus on the implications for relative prices. Observe that in the model labor is perfectly mobile across sectors. Hence there is one wage across sectors in the model. Since the wage is the marginal productivity of a worker in a sector, relative prices are a function of relative labor productivity (see Equation 8). I calculate the price of a sector by dividing its value added in current prices by the value added in constant prices. The model implies that the producer price of services relative to industry increases by 1.67% per year during 2002-2007, very close to the increase in the data for the relative price of services from the implicit price deflators (1.13%).

An increase in the price of services relative to that of industrial goods (such as manufactured goods) is a well documented feature of economic development (see, for example, Obstfeld and Rogoff, 2002). The explanation presented here for this phenomenon relies on

---

10This finding is consistent with the literature on the relative prices of services. For example, Canzoneri et al. (1999) study a panel of OECD countries and argue that relative prices generally reflect relative labor productivity in the long run. Metin-Ozcan and Kalafatclar (2009), using econometric techniques, study Turkish economy during 1995-2007 and find that differences in productivity have significant share (along with the real exchange rate) in accounting for relative price movements between industry and services.
the difference in the growth of labor productivity over time between the two sectors (see Equation 8). Since labor productivity growth lags behind in the service sector, unit labor cost rises in the service sector, and the price of services go up for their provision to remain profitable.\footnote{The results can also be thought in the context of the Balassa-Samuelson effect regarding the open economy issues. Since manufactured goods are tradable across borders while services are largely not, one may observe a secular increase in the price of nontradables relative to that of tradables in an open economy. In other words, differential productivity rates between these two sectors along with the hypothesis of perfect labor mobility leads to inflation rates in the tradable sector (say, industry) that are different from those held in the nontradable sector (say, services).}

A three-sector model of general equilibrium is successful to reproduce most of the secular changes of labor in Turkey during 2002-2007. Below I do several experiments. Specifically, I am interested in whether mimicking labor productivity growth by sector in China would have significant consequences for aggregate labor productivity in Turkey during 2002-2007.

### 3.3 Counterfactuals

I conduct different counterfactual experiments in the spirit of Duarte and Restuccia (2010) to see what would have happened to the sectoral employment shares and aggregate labor productivity if Turkey could have had sectoral productivity growth rates observed in China. Aggregate labor productivity is given by a weighted average of the productivity growth of the sectors with the weights being the corresponding employment shares. I compute counterfactuals where I set the growth rate of labor productivity in one sector to the growth rate in that sector in China, leaving the other sectoral growth rates as in the Turkish data.

Experiment 1 asks how this economy would change if year-by-year labor productivity growth rate in agriculture followed the path observed in China during 2002-2007. Experiment 2 asks how this economy would change if year-by-year labor productivity growth rate in industry followed the path observed in China. Experiment 3 asks how this economy would change if year-by-year labor productivity growth rate in services followed the path observed in China. For completeness, I also compute a counterfactual where all sectoral growth rates are set to the ones in China. Specifically, Experiment 4 asks how this economy would change if year-by-year labor productivity growth rates in all the sectors followed the paths observed in China. For comparison, I also report the data and the results of the benchmark economy.

Table 2 provides an understanding of how aggregate output per worker would have changed under alternative scenarios.\footnote{Table A.1 reports the allocation of employment across sectors, compared to the benchmark results, under alternative scenarios.} Counterfactual experiments do have important implications for the behavior of aggregate labor productivity compared to the benchmark results. Experiment 1 (2) suggests that if agriculture (industry) in Turkey had had the same annual productivity growth rates as observed in China, then the average annual growth rate of the aggregate labor productivity would have been 6.4\% (6.1\%) instead of 5.7\% in Turkey between 2002 and 2007. Experiment 3 shows that if the service sector in Turkey had had the same annual productivity growth rates as observed in China, then the average annual growth rate of the aggregate labor productivity would have been 8.5\% instead of 5.7\% during 2002-2007.
Table 2: Counterfactuals

<table>
<thead>
<tr>
<th>Average Annual Growth in Aggregate Output per Worker (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
</tr>
<tr>
<td>2002-2007</td>
</tr>
</tbody>
</table>

A comparison of these three experiments reveals that the high growth in aggregate labor productivity would have been accomplished by feeding the service sector productivity growth rates observed in China. Experiment 4 points out that if all the sectors in Turkey had mimicked the productivity growth paths of the Chinese sectors, then the average annual growth rate of the aggregate labor productivity would have been 10.1% during 2002-2007.

I also conduct another experiment to see the role of the labor productivity growth in the service sector, where the growth rates of labor productivity in agriculture and industry are set to the growth rates in these sector in China, leaving the service sector growth rates as in the Turkish data. The average annual growth rate of the aggregate labor productivity would have been 7.0% in this experiment.

4 Discussion

The counterfactuals point out that Turkey would have accomplished higher growth in aggregate labor productivity if the service sector had shown higher growth rates. The results suggest a detailed analysis of the service sector (in addition the other individual sectors of the aggregate economy) in Turkey. Table 3 provides some details for different sectors.

Table 3: Sectoral Shares and Productivity in Turkey, 2002 - 2007

<table>
<thead>
<tr>
<th>Sector</th>
<th>Employment Shares (%)</th>
<th>GDP Shares (%)</th>
<th>GDP per Worker (TL per person)</th>
<th>Average Annual Growth of Labor Productivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture, forestry, hunting and fishing</td>
<td>31.3</td>
<td>23.5</td>
<td>12.5</td>
<td>9.7</td>
</tr>
<tr>
<td>Mining and quarrying</td>
<td>0.6</td>
<td>0.6</td>
<td>1.1</td>
<td>1.6</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>18.7</td>
<td>19.7</td>
<td>21.6</td>
<td>21.4</td>
</tr>
<tr>
<td>Electricity, gas and water</td>
<td>0.5</td>
<td>0.5</td>
<td>2.8</td>
<td>2.4</td>
</tr>
<tr>
<td>Construction</td>
<td>4.7</td>
<td>5.9</td>
<td>5.1</td>
<td>6.2</td>
</tr>
<tr>
<td>Wholesale and retail trade, restaurants and hotels</td>
<td>19.5</td>
<td>22.0</td>
<td>17.6</td>
<td>18.4</td>
</tr>
<tr>
<td>Transportation, communication and storage</td>
<td>4.9</td>
<td>5.5</td>
<td>17.0</td>
<td>17.7</td>
</tr>
<tr>
<td>Finance, insurance, real estate and business services</td>
<td>3.6</td>
<td>5.1</td>
<td>9.4</td>
<td>9.3</td>
</tr>
<tr>
<td>Community, social and personal services</td>
<td>16.4</td>
<td>17.3</td>
<td>13.0</td>
<td>13.2</td>
</tr>
</tbody>
</table>

Source: Üngör (2011a). Note: GDP shares are in current prices.

Labor productivity increased in all sectors except in non-market services during 2002-2007. Average annual growth in labor productivity is highest in electricity, gas and water (7.8%), second in manufacturing (5.9%), third in transportation, communication and stor-
age (5.1%), and fourth in agriculture (4.8%) during 2002-2007. Table 1 shows the lack of productivity growth in services compared to the manufacturing sector. Productivity growth in the service sector is attributable to the two market services: (i) wholesale and retail trade, restaurants and hotels; and (ii) transportation, communication and storage. On the other hand, average annual growth in labor productivity of finance, insurance, real estate and business services is less than 1% during 2002-2007. More importantly, negative productivity growth is observed for non-market services (community, social and personal services). This sub-sector’s employment share in total employment was 17.3% in 2007. One explanation for the observed low productivity in this sub-sector is that non-market service sector is typically labor-intensive with a possible low level of competition—both factors that slow productivity. These findings can also be interpreted in line with Jorgenson and Timmer (2011) that there is a need for improved measurement of non-market services and finance.

Whilst the analysis of sectoral growth is informative, the relative sizes of the sectors are of significant importance when evaluating how significant an impact each sector makes to overall labor productivity growth. I conduct a shift-share analysis expressing the labor productivity for the economy as a whole as the productivity level by sector weighted by the sectoral employment shares:

\[
\frac{Y_T}{L_T} - \frac{Y_0}{L_0} = \sum_{j=1}^{J} \theta_{j0} \left( \frac{Y_{jT}}{L_{jT}} - \frac{Y_{j0}}{L_{j0}} \right) + \sum_{j=1}^{J} (\theta_{jT} - \theta_{j0}) \frac{Y_{j0}}{L_{j0}} + \sum_{j=1}^{J} (\theta_{jT} - \theta_{j0}) \left( \frac{Y_{jT}}{L_{jT}} - \frac{Y_{j0}}{L_{j0}} \right) \tag{9}
\]

Here \( \frac{Y_T}{L_T} - \frac{Y_0}{L_0} \) is the labor productivity growth between years 0 and T, \( j \) is the sector, and \( \theta_{jT} \) is the share of employment in sector \( j \) in year \( T \) (van Ark, 1996; Maudos et al., 2008). The intra-sectoral effect shows the part of the overall productivity change which is caused by productivity growth within the sectors. That is, it is due to the aggregate productivity gains obtained because of the internal improvements of productivity in each sector. The structural change effect captures the effect of the re-allocation of factors between sectors towards industries with a higher initial level of labor productivity (static effect), or a higher rate of labor productivity growth (dynamic effect). The dynamic sectoral effect (or the interaction effect) represents the joint effect of changes in employment shares and sectoral productivity.

Table 4 shows the percentage contributions of the three effects to the overall labor productivity growth for different service sectors during 2002-2007. The columns report the separate effects: intra, static- and dynamic-shift effects and the total effect looking at the total contribution of all five sectors during 2002-2007. The intra-sectoral effect dominates the outcome and productivity growth within the nine sectors explains 68.0% of the aggregate labor productivity growth in Turkey. Structural change explains the remaining 32%: 29.1% is due to the static sectoral effect and 2.9% is due to the dynamic sectoral effect.

There are considerable variations in the importance played by different sectors. However, market services and manufacturing are major contributors during the 2002-2007 acceleration, and market services appear to be the most important source. Market services contribute
56.5% to the aggregate labor productivity.\textsuperscript{13} This positive productivity growth contribution of market services are from the very similar contributions of the sub-sectors of this sector: transportation, communication and storage (19.8% in total); finance, insurance, real estate and business services (18.4% in total); and wholesale and retail trade, restaurants and hotels (18.3% in total). Among the individual sectors, manufacturing contributes most (30.6% in total) to the labor productivity growth during 2002-2007. This is mostly due to intra-growth in this sector (25.2%).

Table 4: Sectoral Contributions, 2002 - 2007 (%)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Intra</th>
<th>Static</th>
<th>Dynamic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture, forestry, hunting and fishing</td>
<td>11.2</td>
<td>-10.4</td>
<td>-2.8</td>
<td>-2.0</td>
</tr>
<tr>
<td>Mining and quarrying</td>
<td>0.1</td>
<td>0.3</td>
<td>0.02</td>
<td>0.5</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>25.2</td>
<td>4.1</td>
<td>1.3</td>
<td>30.6</td>
</tr>
<tr>
<td>Electricity, gas and water</td>
<td>3.0</td>
<td>-0.3</td>
<td>-0.1</td>
<td>2.5</td>
</tr>
<tr>
<td>Construction</td>
<td>4.3</td>
<td>5.0</td>
<td>1.2</td>
<td>10.5</td>
</tr>
<tr>
<td>Wholesale and retail trade, restaurants and hotels</td>
<td>10.7</td>
<td>6.2</td>
<td>1.4</td>
<td>18.3</td>
</tr>
<tr>
<td>Transportation, communication and storage</td>
<td>12.8</td>
<td>5.5</td>
<td>1.5</td>
<td>19.8</td>
</tr>
<tr>
<td>Finance, insurance, real estate and business services</td>
<td>1.1</td>
<td>16.8</td>
<td>0.5</td>
<td>18.4</td>
</tr>
<tr>
<td>Community, social and personal services</td>
<td>-0.4</td>
<td>1.9</td>
<td>-0.02</td>
<td>1.4</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>68.0</strong></td>
<td><strong>29.1</strong></td>
<td><strong>2.9</strong></td>
<td><strong>100.0</strong></td>
</tr>
</tbody>
</table>

The most striking observation is that the total contribution of non-market services to growth in labor productivity is very small (1.4% in total). Table 3 and Table 4 indicate that non-market services have the symptoms of Baumol’s (1967) cost disease: non-market services suffer from low productivity growth, increasing output prices and growing shares in employment and nominal output. Moreover, this technologically stagnant sector showed slower growth in real output than have the technologically dynamic ones. Market services increased shares in nominal output and employment as well.\textsuperscript{14} However, labor productivity growth in market services was lower than in manufacturing.

The results of this paper may help focus the attention to policies that have different effects across sectors and across time. For example, Duarte and Restuccia (2010) state that because services are less traded manufacturing goods, the service sectors are less subject to competitive pressure, which may create obstacles to productivity growth.\textsuperscript{15} This statement

\textsuperscript{13}Market services include wholesale and retail trade, restaurants and hotels; transportation, communication and storage; finance, insurance, real estate and business services; and non-market services include community, social and personal services (see Timmer and de Vries, 2009).

\textsuperscript{14}One aspect of the rise in the service sector for recent years is the increases in the number of the foreigncontrolled firms, which were very few in Turkey until 2001. These firms are mainly concentrated in domestic market-oriented service sector activities such as banking, telecommunications and retail trade. Sayek (2007) provides some observations regarding foreign direct investment (FDI) flows to Turkey and notes the regulatory changes implemented with the FDI Act (Law No. 4875) that entered into force as of June 2003. With this legislative change, investment climate has been made more favorable for the entries of foreign firms.

\textsuperscript{15}Alesina et al. (2005) use data on regulation in several sectors of many OECD countries to provide
seems to be an important avenue for further research on Turkey regarding data from the OECD Indicators of Product Market Regulation. The OECD has developed a range of indicators of product market regulation at both the economy-wide and sectoral levels. All of these indicators measure the extent to which policy settings promote or inhibit competition in areas of the product market where competition is viable. Among the OECD countries, Turkey (with Luxembourg, the Czech Republic, Mexico, and Poland) is characterized by restrictions on competition that are significantly higher than average: the importance of state control seems to be one of the highest in Turkey than elsewhere in the OECD, and barriers to entrepreneurship and investment appear to play an important role in limiting overall competitive pressures in Turkey, though there are some improvements throughout the time (Wölfl et al., 2009).

5 Concluding Remarks

This paper centers around an important component of economic growth that has not received the required attention of the policy making debate in Turkey during the high-growth era of 2002-2007. At the center of this analysis is the view that along the growth process there are enormous heterogeneity among different services. This paper investigates quantitatively how much and in what ways the Turkish service sector absorbs labor and contributes to the overall economic growth, and whether there are discernible signs of cost disease.

The results point out that the service sector represented a drag on aggregate productivity in Turkey between 2002 and 2007. The services employment share continues to increase in Turkey implying that the aggregate labor productivity converges to the services productivity in the long run. As services make up an increasing share of the Turkish economy, a decline in aggregate productivity growth would be inevitable. The findings of this paper calls for more research on productivity growth in individual service sectors.

The findings of this paper call for paying greater attention to individual service sectors to understand the process of economic growth in emerging markets. It is well-known that the problem of measuring output (and therefore productivity) is in general much more challenging in services than in goods-producing industries (Griliches, 1994; Inklaar et al., 2008). One direction for further research is to enrich the sectoral production functions to gain further insight into the sources of productivity growth in each sector considering sectoral differences in capital accumulation, hours worked, capacity utilization, technology adoption, regulation, informal and home production, etc., which are omitted in this study. These factors may provide a more complete picture for the sectoral productivity differences in Turkey answering the possible questions of whether measurement issues can account for the individual sectors’ productivity growth rates (McKinsey, 2003; Saygılı et al., 2005).

Evidence that regulatory reform of product markets is associated with an increase in investment. Barone and Cingano (2011) study the effects of anti-competitive service regulation by examining whether OECD countries with less anti-competitive regulation see better economic performance in manufacturing industries that use less-regulated services more intensively and find that that service regulation has a significant negative impact on the growth rate of value added, productivity and exports of service dependent industries in some of the OECD countries.

16www.oecd.org/economy/pmr
Since I abstract from capital and fixed factors in production, differences in labor productivity implicitly incorporates differences due to capital as well as due to the institutional differences across sectors. For example, an explicit introduction of land, private, and public capital would help the measurement of total factor productivity in addition to the labor productivity (see, for example, Verma (2012) for a study that analyzes the factors responsible for generating the services led growth witnessed in the Indian economy during 1980-2005). There are also data limitations, such as that there is little data on hours worker per worker outside manufacturing (or at least urban) sector in Turkey as in many developing countries.

This paper provides some insights for policy makers suggesting the promotion of policies to raise the services productivity in the pursuit of sustainable growth and catch-up strategies; and understanding there are considerable variations in the importance played by different sectors. One policy message is that there is a need to understand the key drivers of competitiveness in each sector to be able to understand differences in growth rates across sectors in the Turkish economy. This requires attempts to supplement aggregate calculations with micro-level information about individual firms or narrowly defined industries (see also Taymaz and Suicmez (2005) for some policy suggestions to increase productivity both at the sector and firm level). Lastly, a more refined treatment of the service sector (especially non-market services) in a model economy featuring household production could be another direction for further research (Rogerson, 2008).

Appendix A

![Figure A.1: Sensitivity, Sectoral Employment Shares in Non-Agriculture](image-url)
Table A.1: Counterfactuals

(a): Employment Share of Agriculture (%)

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Benchmark</th>
<th>Experiment 1</th>
<th>Experiment 2</th>
<th>Experiment 3</th>
<th>Experiment 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>31.3</td>
<td>31.3</td>
<td>31.3</td>
<td>31.3</td>
<td>31.3</td>
<td>31.3</td>
</tr>
<tr>
<td>2003</td>
<td>30.5</td>
<td>30.9</td>
<td>30.1</td>
<td>30.9</td>
<td>30.9</td>
<td>30.1</td>
</tr>
<tr>
<td>2004</td>
<td>29.9</td>
<td>30.1</td>
<td>27.3</td>
<td>30.1</td>
<td>30.1</td>
<td>27.3</td>
</tr>
<tr>
<td>2005</td>
<td>26.0</td>
<td>25.0</td>
<td>24.9</td>
<td>25.0</td>
<td>25.0</td>
<td>24.9</td>
</tr>
<tr>
<td>2006</td>
<td>24.1</td>
<td>23.2</td>
<td>22.6</td>
<td>23.2</td>
<td>23.2</td>
<td>22.6</td>
</tr>
<tr>
<td>2007</td>
<td>23.5</td>
<td>24.7</td>
<td>21.0</td>
<td>24.7</td>
<td>24.7</td>
<td>21.0</td>
</tr>
</tbody>
</table>

(b): Employment Share of Industry (%)

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Benchmark</th>
<th>Experiment 1</th>
<th>Experiment 2</th>
<th>Experiment 3</th>
<th>Experiment 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>24.4</td>
<td>24.4</td>
<td>24.4</td>
<td>24.4</td>
<td>24.4</td>
<td>24.4</td>
</tr>
<tr>
<td>2003</td>
<td>24.1</td>
<td>23.9</td>
<td>24.2</td>
<td>23.9</td>
<td>24.3</td>
<td>24.4</td>
</tr>
<tr>
<td>2004</td>
<td>24.7</td>
<td>24.3</td>
<td>25.3</td>
<td>24.3</td>
<td>24.3</td>
<td>25.3</td>
</tr>
<tr>
<td>2005</td>
<td>26.2</td>
<td>26.2</td>
<td>26.3</td>
<td>25.7</td>
<td>26.9</td>
<td>26.5</td>
</tr>
<tr>
<td>2006</td>
<td>26.8</td>
<td>26.5</td>
<td>26.7</td>
<td>26.0</td>
<td>28.0</td>
<td>27.6</td>
</tr>
<tr>
<td>2007</td>
<td>26.8</td>
<td>26.0</td>
<td>27.3</td>
<td>25.2</td>
<td>28.4</td>
<td>28.8</td>
</tr>
</tbody>
</table>

(c): Employment Share of Services (%)

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Benchmark</th>
<th>Experiment 1</th>
<th>Experiment 2</th>
<th>Experiment 3</th>
<th>Experiment 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>44.3</td>
<td>44.3</td>
<td>44.3</td>
<td>44.3</td>
<td>44.3</td>
<td>44.3</td>
</tr>
<tr>
<td>2003</td>
<td>45.4</td>
<td>45.2</td>
<td>45.7</td>
<td>45.2</td>
<td>44.8</td>
<td>45.4</td>
</tr>
<tr>
<td>2004</td>
<td>45.4</td>
<td>45.6</td>
<td>47.4</td>
<td>45.6</td>
<td>45.6</td>
<td>47.4</td>
</tr>
<tr>
<td>2005</td>
<td>47.8</td>
<td>48.8</td>
<td>48.8</td>
<td>49.3</td>
<td>48.1</td>
<td>48.6</td>
</tr>
<tr>
<td>2006</td>
<td>49.2</td>
<td>50.2</td>
<td>50.6</td>
<td>50.8</td>
<td>48.8</td>
<td>49.7</td>
</tr>
<tr>
<td>2007</td>
<td>49.8</td>
<td>49.3</td>
<td>51.7</td>
<td>50.2</td>
<td>47.0</td>
<td>50.2</td>
</tr>
</tbody>
</table>
References


http://www.conference-board.org/data/economydatabase/


World Bank. 2012. World Development Indicators Database.